|
Regenerative design is a process-oriented systems theory based approach to design. The term "regenerative" describes processes that restore, renew or revitalize their own sources of energy and materials, creating sustainable systems that integrate the needs of society with the integrity of nature. The basis is derived from systems ecology with a closed loop input–output model or a model in which the output is greater than or equal to the input with all outputs viable and all inputs accounted for. Regenerative design is the biomimicry of ecosystems that provide for all human systems to function as a closed viable ecological economics system for all industry. It parallels ecosystems in that organic (biotic) and synthetic (abiotic) material is not just metabolized but metamorphosed into new viable materials. Ecosystems and regeneratively designed systems are holistic frameworks that seek to create systems that are absolutely waste free. The model is meant to be applied to many different aspects of human habitation such as urban environments, buildings, economics, industry and social systems. Simply put, it is the design of ecosystems and human behavior, or culture that function as human habitats. Whereas the highest aim of sustainable development is to satisfy fundamental human needs today without compromising the possibility of future generations to satisfy theirs, the end-goal of regenerative design is to redevelop systems with absolute effectiveness, that allows for the co-evolution of the human species along with other thriving species. == History == During the late 1970s, John T. Lyle (1934–1998), a landscape architecture professor, challenged graduate students to envision a community in which daily activities were based on the value of living within the limits of available renewable resources without environmental degradation. Over the next few decades an eclectic group of students, professors and experts from around the world and crossing many disciplines developed designs for an institute to be built at Cal Poly Pomona. In 1992 the Lyle Center for Regenerative Studies was built over two years and opened in 1994. In that same year Lyle's book ''Regenerative Design for Sustainable Development'' was published by Wiley. In 1995 Lyle worked with William McDonough at Oberlin College for the Adam Joseph Lewis Center for Environmental Studies completed in 2000. In 2002 McDonough's book, the more popular and successful, ''Cradle to Cradle: Remaking the Way We Make Things'' was published reiterating the concepts developed by Lyle. Lyle saw the connection between concepts developed by Bob Rodale of the Rodale Institute for regenerative agriculture and the opportunity to develop regenerative systems for all other aspects of the world. While regenerative agriculture focused solely on agriculture, Lyle expanded its concepts and use to all systems. With regenerative agriculture, the concepts are very straight forward and simple but Lyle understood that when developing for other types of systems, more complicated ideas such as entropy and emergy must be taken into consideration. Swiss architect Walter R. Stahel developed approaches entirely similar to Lyle's also in the late 1970s but instead coined the term cradle-to-cradle design made popular by McDonough and Michael Braungart 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「regenerative design」の詳細全文を読む スポンサード リンク
|